Group Search Optimizer with Interactive Dynamic Neighborhood

نویسندگان

  • Guohua He
  • Zhihua Cui
  • Jianchao Zeng
چکیده

Group search optimizer(GSO) is a new novel optimization algorithm by simulating animal behaviour. It uses the Gbest topology structure, which leads to rapid exchange of information among particles. So,it is easily trapped into a local optima when dealing with multi-modal optimization problems. In this paper,inspiration from the Newman and Watts model,a improved group search optimizer with interactive dynamic neighborhood (IGSO) is proposed.Adopting uniform design and the linear regression method on the parameter selection, four benchmark functions demonstrate the effectiveness of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER

This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...

متن کامل

INVESTIGATION OF SEISMIC PERFORMANCE OF STEEL FRAMES BASED ON A QUICK GROUP SEARCH OPTIMIZER

A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connection...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

A Hybrid Meta-heuristic for the Dynamic Layout Problem with Transportation System Design

This paper primarily presents a comprehensive dynamic layout design model which integrates layout and transportation system design via considering more realistic assumptions, such as taking account of fixed-position departments and distance between departments that endanger each other. In addition, specific criteria such as capacity, cost and reliability of facilities are considered in transpor...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011